
Free and Bound Variables

If we didn't have to deal with state, an interpreter for
Scheme expressions would be easy.

The idea is this:
to evaluate ((lambda (x) body) e) we recursively evaluate e
to get value a, then evaluate body with variable x replaced
by a.

To evaluate ((let ([x e]) body) we again recursively
evaluate e to get value a, then evaluate body with variable
x replaced by a.

We won't take this all the way here, but we will write a few
of the Scheme functions we will need to do this formally.

First, we need the notions of free and bound variables.

We say that variable x occurs free in expression E if

• E is the variable x
• E has the form (lambda (params) E'), x is not one of

the params, and x occurs free in E'.
• E has the form (let (binding list) E'), x is not one of the

variables from the binding list, and x occurs free in E'
• E has the form (E1 E2 ... Ek) and x is free in any of the

Ei.

We can write a procedure that tests for this:

(define occurs-free?
 (lambda (x E)
 (cond
 [(null? E) #f]
 [(atom? E) (eq? x E)]
 [(eq? (car E) 'lambda)
 (and (not (member x (bindings E)))
 (occurs-free? x (body E)))]
 [(eq? (car E) 'let)
 (and (not (member x (let-bindings E)))
 (occurs-free? x (body E)))]
 [else (or (occurs-free? x (car E))
 (occurs-free? x (cdr E)))])))

Here bindings, body and let-bindings are simple functions that pull apart the
elements of a lambda-expression or a let-expression.

We say that variable x occurs bound in an expression E of
• E has the form (lambda (params) E') and x is one of

the params and x occurs free in E'
• E has the form (lambda (params) E') and x occurs

bound in E'
• E has the form (let (bindings) E') and either x is one of

the params and x occurs free in E' or else x occurs
bound in E'

• E has the form (E1 E2 ... Ek) and x occurs bound in any
of the Ei.

We can write this in Scheme as well:

(define occurs-bound?
 (lambda (x E)
 (cond
 [(null? E) #f]
 [(atom? E) #f]
 [(eq? (car E) 'lambda)
 (or (and (member x (bindings E))
 (occurs-free? x (body E)))
 (occurs-bound? x (body E)))]
 [(eq? (car E) 'let)
 (or (and (member x (let-bindings E))
 (occurs-free? x (body E)))
 (occurs-bound? x (body E)))]
 [else (or (occurs-bound? x (car E))
 (occurs-bound? x (cdr E)))])))

For example
 (occurs-free? 'x '(lambda (y) (+ x y))) returns #t
 (occurs-bound? 'y '(lambda (y) (+ x y)) returns #t

The idea behind a substitution interpreter is to evaluate the
expression (let ([x a] [y b] body) by replacing the free
occurrences of x and y in body with a and b, and evaluating
the result. We do the same thing with
((lambda (x y) body) a b)

The following function does the substitution

First we handle the case of just one variable:
(define substitute-for-free (lambda (a x E)
 (cond
 [(null? E) null]
 [(atom? E) (if (eq? E x) a E)]
 [(eq? (car E) 'lambda)
 (if (occurs-free? x E)
 (list 'lambda (bindings E) (substitute-for-free a x
 (body E)))
 E)]
 [(eq? (car E) 'let)
 (if (occurs-free x E)
 (list 'let (bindings E) (substitute-for-free a x
 (body E)))
 E)]
 [else (cons (substitute-for-free a x (car E))
 (substitute-for-free a x (cdr E)))])))

Then we do this for extended binding lists:

(define substitute-many-for-free
 (lambda (values syms E)
 (cond
 [(null? values) E]
 [else (substitute-for-free (car values) (car syms)
 (substitute-many-for-free (cdr values) (cdr syms) E))])))

For example
(substitute-many-for-free (2 5) (x y) (* (+ x 3) y) returns (* (+ 2 3) 5)

The procedure names here are long, but this is easy coding. If we had a good
way to represent procedures we could easily extend this into a full
interpreter of the functional parts of Scheme. But then there is set!

